

VOLUME 1, ISSUE 1 (2024)

PJSET
PHILIPPINE JOURNAL OF SCIENCE, ENGINEERING, AND TECHNOLOGY

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Cite as: E.P. Bibangco & M.D. Dionson, “Comparative Analysis of Supervised Learning Algorithms in Predicting Students At-Risk of Failure in Introductory
Programming Courses,” PJSET, vol. 1, issue 1, pp. 27-33, 2024.

R E S E A R C H A R T I C L E

Evaluating Supervised Learning Algorithms for

Predicting At-Risk Students in Introductory

Programming Courses: A Comparative Study

El Jireh P. Bibangco1* | Mary Gift D. Dionson2

1College of Computer Studies, Carlos Hilado Memorial State University, Talisay City, Negros Occidental, 6115 Philippines
2College of Computing and Information Technology, National University, Bacolod City, 6100 Philippines

*Correspondence: eljireh.bibangco@chmsc.edu.ph

Article History:
Abstract

This study compares the performance of five supervised learning algorithms—logistic

regression (LR), logistic regression optimized using stochastic gradient descent

(SGD), Naïve Bayes (NB), support vector machine (SVM), and classification and

regression tree (CART)—in predicting students at risk of failure in introductory

programming courses. Using a dataset of 68 students from a private higher education

institution, the algorithms were evaluated through five-fold cross-validation based on

accuracy, precision, and recall. Results indicated that SGD achieved the highest

accuracy (73.09%) and precision (78.21%), while NB excelled in recall (93.80%).

These findings suggest that SGD is preferable for accuracy-focused contexts, while

NB is suitable for recall-focused scenarios. Moreover, the differences in performance

among the algorithms in terms of accuracy and recall were statistically significant

using ANOVA and post-hoc tests. This finding highlights the critical role of algorithm

selection in predictive modeling for educational interventions, guiding educators to

make data-driven decisions to support at-risk students better.

Copyright © 2024. All rights reserved.

Received: February 25, 2024

Revised: May 10, 2024

Accepted: June 10, 2024

Keywords:

Academic Performance

Decision Tree

Educational Data Mining

Logistic Regression

Naïve Bayes

Predictive Modeling

Presented during the AUDRN

International Research Conference

on Local Knowledge 2024 at Lipa

City, Batangas, Philippines on

February 1-2, 2024

1 | INTRODUCTION

omputer programming is considered one of the

essential skills that every computing student must

acquire and develop [1]. Unfortunately, many

college students perceive programming as complicated [2],

complex [3], and excessively demanding [4]. Several factors

contribute to this negative perception, including the abstract

nature of programming [5] and its demand for higher-order

thinking skills [6]. Unfortunately, this perception often leads

to significant issues [3], such as negative attitudes toward

programming courses [7], fear of the subject [8], and notably

high failure rates [9]. Consequently, there is a critical need for

effective strategies and interventions to address these

challenges and improve student outcomes. By fostering a

more supportive learning environment and utilizing

innovative teaching methods, educators can help students

overcome these obstacles and build confidence in their

programming abilities.

High failure rates in programming courses are typical in

higher education institutions worldwide [10]. A 2019 report

[11] revealed that the global average failure rate in

programming courses was 28%. While this rate slightly

improved from the 32% reported in 2014 [12], the failure rate

remains alarmingly high. This persistent issue highlights the

ongoing challenges in programming education that underscore

the need for improved teaching methodologies and support

systems to equip students to overcome the complexities of

programming better.

These high failure rates affect the student's academic

performance and self-confidence and have broader impacts on

the IT industry, which relies on a steady influx of skilled

programmers. Thus, these challenges must be addressed to

foster a more positive learning environment and ensure the

development of competent professionals in the field.

Additionally, we must address the gap in knowledge about the

factors contributing to these high failure rates and mitigate

them through tailored solutions.

C

28 PHILIPPINE JOURNAL OF SCIENCE, ENGINEERING, AND TECHNOLOGY 2024

One of the proposed solutions to improve students'

passing rate in programming is using predictive models to

identify at-risk students earlier [4] and provide targeted

interventions [13]. Significant predictors must be identified

and fed into a machine learning algorithm to discover hidden

patterns and build an intelligent model to identify students at

risk of failing introductory programming courses even before

enrollment. This identification task should provide insights

into designing tailored solutions, especially for those needing

them the most [14].

Despite the recognized importance of early identification

of at-risk students, more research is needed to compare the

performance of different supervised learning algorithms in

this context. Instead, previous studies have primarily focused

on single algorithms or small-scale comparisons, leaving a

gap in comprehensive, comparative analyses that can inform

best practices in predictive modeling for educational

interventions. Thus, this study aims to fill this gap by

evaluating and comparing five supervised learning

algorithms—Logistic Regression (LR), Logistic Regression

optimized using Stochastic Gradient Descent (SGD), Naïve

Bayes (NB), Support Vector Machine (SVM), and

Classification and Regression Tree (CART)—in predicting

at-risk students in introductory programming courses.

Specifically, this study has three main objectives: (1) to

determine the overall accuracy, precision, and recall scores of

the different supervised machine learning algorithms in

predicting students at risk of failing in programming courses;

(2) to identify the most significant predictors of at-risk

students based on pre-admission data; and (3) to recommend

the most suitable algorithm for early intervention based on

comparative performance.

2 | RELATED STUDIES
A. Supervised Machine Learning Algorithms

Supervised machine learning algorithms are widely used
to build models that determine the relationship between a set
of predictors and a target feature [15]. These algorithms
identify vital characteristics within the predictors associated
with the target feature during the model-building process [16].
Once trained, the model can predict the target feature for new
observations based on the discovered key characteristics [17].

Several supervised machine learning algorithms are
popular in the industry due to their effectiveness in handling
various predictive tasks. This study, however, selected only
five supervised learning algorithms: LR, SGD, NB, CART,
and SVM. LR, a widely used algorithm for binary
classification problems, is known for its simplicity and
effectiveness [18]. SGD is an enhanced version of LR with
higher efficiency and faster convergence speed [19]. NB, a
probabilistic classifier based on Bayes' theorem, is particularly
effective for high-dimensional data [20]. CART is a non-
parametric method that creates decision trees based on the
features and their values [21]. Finally, SVM is a robust
classification algorithm that finds the optimal hyperplane to
separate different classes [22].

B. Complexity of Computer Programming

Computer programming is an essential component of the

education process for computing students [7]. Consequently,

most computer and information science curricula introduce

programming courses as early as the first year. As a result,

programming is often perceived as mentally demanding,

especially by first-year students and aspirants who need prior

programming experience [23]. This negative perception is

attributed to the higher-order thinking skills requirement [5]

and the abstract nature of programming [6], which most new

programmers need to be more accustomed to handling [7].

Researchers have identified various factors contributing to

the perceived difficulty of programming [24], [25], [26]. For

instance, research [3] found that mathematical knowledge,

prior programming experience, and student interest

significantly impact the complexity of learning computer

programming. Additionally, time insufficiency, self-

inefficacy, and mismatched question-time allotment are

among the top reasons students fail programming [1]. Thus, a

multifaceted approach is needed to address the negative

perception of programming. In addition, educators need to

consider students' diverse backgrounds and experiences, such

as their mathematical proficiency and prior exposure to

programming. Interventions should focus on improving time

management skills, boosting students' confidence, and

ensuring that assessments are appropriately timed and aligned

with the student's learning pace. Moreover, incorporating

adaptive learning technologies and personalized support can

further help tailor the educational experience to individual

student needs. By tackling these issues, educators can create a

more supportive learning environment, potentially enhancing

overall student success in programming courses.

C. Predicting Student's Performance in Programming

Predicting student performance in programming courses is

a prominent theme in computer science education research

[3]. For this purpose, scholars have used various data mining

and machine learning techniques to predict students’

programming performance before enrolling in relevant

courses. For instance, Badr et al. [27] presented a data mining

model that predicts student performance in programming

courses based on their grades in introductory education

courses, including English and mathematics. Meanwhile,

ElGamal [28] used a data mining model to predict student

performance in programming using factors such as

mathematical background and aptitude. On the other hand,

Bergin et al. [29] employed various machine-learning

algorithms to predict student performance in programming

courses. Their earlier study [30] used a logistic regression

model to predict student success in programming. These

studies are evidence that, by leveraging predictive models,

educators can proactively identify at-risk students of either

failing or underperforming in programming.

3 | METHODOLOGY
A. Research Design

 This study employed a comparative research design to
evaluate the effectiveness of five supervised learning
algorithms—LR, SGD, NB, SVM, and CART—to predict
students at risk of failing introductory programming courses.
The rationale for selecting these algorithms is based on their
widespread use in educational data mining and their varying
strengths in handling different types of data and prediction
tasks [31]. The comparative approach allows for a robust
evaluation of each algorithm's performance across multiple
metrics. Figure 1 shows the train-test process, including
feature engineering, adopted in this study.

VOLUME 1, ISSUE 1 29

Figure 1. Train-Test Schematic Diagram.

B. Dataset and Sample Size

 The data used in this study was collected from a private
higher education institution and included records of 68
students enrolled in introductory programming courses. The
sample size, though relatively small, is representative of the
student population in the institution's programming courses.
Data collection involved extracting pre-admission records and
academic performance data from the institution's database.
The collected data included various demographic and
educational variables, such as honors received in high school,
parental status, and personal choice of admission. Several
preprocessing steps were performed to ensure the data's
quality and relevance. Missing values were handled using
mean imputation for numerical variables and mode imputation
for categorical variables. Outliers were identified and
removed based on standard deviation criteria. Feature
selection was guided by a literature review and expert
consultation, identifying key demographic and academic
variables relevant to predicting student performance.

C. Ethical Considerations

 Ethical considerations were paramount in this study. Data
anonymization was rigorously applied to remove personally
identifiable information, ensuring student privacy and
confidentiality. Informed consent was obtained from all
participants through a detailed consent form, which
communicated the study's purpose, methods, and potential
implications. Participants were assured of their right to
withdraw from the study at any time without any
consequences. The research adhered to the ethical guidelines
set by the institution's review board, ensuring that the survey
was conducted responsibly and ethically. Additionally, the
study was approved by the institution's ethics committee,
which reviewed the consent process and data handling
procedures to ensure compliance with ethical standards.

D. Feature Selection and Engineering

 The feature selection and engineering process was carried
out meticulously to enhance the predictive power of the
models. The initial feature selection was based on a thorough
literature review and expert consultation, which identified
critical demographic and academic variables relevant to
predicting student performance. Additionally, the data
underwent preprocessing steps, including normalization and
handling of missing values, to ensure the integrity and
consistency of the predictors. This careful approach not only
strengthened the model's accuracy but also ensured that the
selected features were robust and relevant to the study's
objectives. Table 1 shows the list of predictors used in this
study, including the code, data type, and description.

TABLE 1. List of Predictors.

CODE TYPE DESCRIPTION DOMAIN

SEX Bin Student’s sex Male, Female

LAREA Bin Student’s Living area Rural, Urban

ARTS Num Abstract Reasoning Test 0 – 25

DTS Num Diagrammatic Test 0 – 20

CTS Num Computing Test 0 – 25

VTS Num Visualization Test 0 – 30

ETS Num Essay Test 0 – 20

PFC Nom Program of 1st Choice CS, EMC, IS, IT

PSC Bin Program of 2nd Choice ITE, non ITE

APC Bin Admission is a Choice Yes, No

SS Bin The student is a Scholar Yes, No

PST Nom Parent’s Status BA, FO, MO, NA

FED Ord Father Highest education N, E, H, C, G

FCG Bin Father is a Graduate Yes, No

MED Ord Mother Highest education N, E, H, C, G

MCG Bin Mother is a Graduate Yes, No

THS Bin Type of High School Public, Private

LHS Bin Location of High School Rural, Urban

STEM Bin Student is STEM Yes, No

HON Bin Student has Honor Yes, No

The predictors included five numeric variables (scores

from abstract reasoning, diagrammatic, computing,
visualization, and essay tests), eleven binary variables (e.g.,
gender, living area, type of high school), two nominal
variables (program of first choice, parents' status), and two
ordinal variables (parents' highest education levels). These
predictors were ranked according to their importance, as
shown in Table 2, using a Python built-in library. A stepwise
approach was used to add features incrementally, evaluating
their impact on model performance at each step. This
approach ensures that the most relevant features are included
while avoiding overfitting and noise.

TABLE 2. Top 10 Predictive Features per Algorithm.

Rank LR SDG NB SVM CART

1 HON HON PST APC CTS

2 APC APC SS HON VTS

3 PST PST STEM PST DTS

4 SS SS PFC SS ETS

5 SEX SEX HON SEX HON

6 STEM PSC THS PSC FED

7 PSC LHS PSC FED ARTS

8 FED THS SEX MED MED

9 THS FED LAREA CTS APC

10 LAREA CTS APC PFC STEM

E. Model Building and Testing

 The dataset was split into five subsets during model
building for five-fold cross-validation. In each iteration, four
subsets were used for training, and one subset was used for
testing. This process was repeated five times, ensuring each
subset was used once as the test set. Five-fold cross-validation
helps in reducing the variability in model performance due to
the specific training-test split and provides a more reliable
evaluation of the models.

 The performance of the models was evaluated using three
key metrics: accuracy, precision, and recall. These metrics,
derived from the confusion matrix shown in Figure 2, provide
a comprehensive assessment of the model's classification
capabilities. The confusion matrix offers a detailed breakdown
of the classification results by displaying the number of true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN) predictions.

30 PHILIPPINE JOURNAL OF SCIENCE, ENGINEERING, AND TECHNOLOGY 2024

 PREDICTED

 At-Risk Not At-Risk
A

C
T

U
A

L
 A

t-
R

is
k

True

Positive

(TP)

False

Negative

(FN)

N
o
t

A
t-

R
is

k

False

Positive

(FP)

True

Negative

(TN)

 Figure 2. Confusion Matrix.

Accuracy is the proportion of correct predictions out of

the total number of predictions made. This metric provides a

general sense of the model's effectiveness across all classes.

The formula used to compute accuracy is shown in Equation

1, which sums the TPs and TNs and divides this sum by the

total number of predictions [29].

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

On the other hand, precision is the number of TP

predictions divided by the total number of positive

predictions, including both TPs and Ps. This measure

indicates the accuracy of the positive predictions made by the

model, reflecting how many of the predicted positive

outcomes were correct. A high precision value means the

model has a low rate of FPs, which is crucial in applications

where the cost of FP is high. The formula used to compute

precision is presented in Equation 2 [29].

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

Recall, also known as sensitivity, measures the model's

ability to identify all positive instances in the dataset

correctly. It is calculated by dividing the number of TP

predictions by the total number of actual positive instances,

including both true and false negatives. A low recall indicates

that the model fails to identify many positive instances,

resulting in many false negatives. The formula used to

compute recall is shown in Equation 3 [29].

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

4 | RESULTS AND DISCUSSION

A. Number of Predictors and Accuracy of Algorithms

 The researchers assessed the accuracy trend for each
algorithm as the number of predictive features increased. A
predictive feature was added for each iteration according to
their ranking, as shown in Table 2, followed by model
building and performance assessment. Figure 3 visualizes the
summary results of this experiment.

Figure 3. Experiment Results Visualization.

 The accuracy of LR starts low but increases significantly
with the addition of more features, peaking at around five
features before experiencing fluctuations. Initially, the
performance is relatively poor with fewer features, but it
stabilizes and improves as more relevant features are included,
indicating the importance of feature richness for this algorithm
[16]. SGD, on the other hand, exhibits a high initial accuracy,
which peaks early but then shows a slight decline and
stabilizes with more features. This algorithm performs
consistently well, maintaining one of the highest accuracy
rates across different numbers of features, demonstrating its
robustness and efficiency in handling high-dimensional data
[19].
 NB starts high but gradually declines as more features are
added, with some fluctuations. It performs well initially with
fewer features but tends to degrade as additional features are
included, possibly due to the increased noise or complexity
introduced by the extra features [20]. Conversely, SVM shows
a relatively stable accuracy rate, with minor fluctuations as the
number of features increases. It maintains a steady
performance across different numbers of features, indicating
its ability to handle varying feature sets effectively [22]. SVM
starts strong and continues to perform well throughout.
Meanwhile, CART shows a unique upward trend as more
features are added, starting from a moderate level and
improving significantly, peaking around 6-7 features before
stabilizing. CART initially performs moderately but benefits
greatly from additional features [21].
 SGD and SVM generally maintain the highest accuracy
rates across different numbers of features. SGD, in particular,
peaks early and sustains high performance. LR shows a
significant improvement with an increasing number of
features. In contrast, NB suffers from overfitting as more
features are added. SVM and CART exhibit stable and
improving trends, respectively, indicating their robustness
regarding predictor count and ability to leverage additional
information effectively. While LR and NB fluctuate more
significantly, SGD, SVM, and CART demonstrate more
stable and consistent performance, making them more reliable
for scenarios with varying feature sets.
 These results underscore the importance of selecting a
suitable algorithm based on the available predictors.
Algorithms like SGD and SVM, which show robust
performance across different feature sets, may be preferred for
their consistency and reliability [19], [22]. Conversely, while
NB can perform well with limited features, it may not scale as
effectively with added complexity [20]. On the other hand, LR
can significantly benefit from a richer feature set, making it
suitable for applications where comprehensive data is
available [16]. Finally, CART's performance improvement
with more features highlights its strength in scenarios where
feature richness can be fully exploited [21].

VOLUME 1, ISSUE 1 31

 Further analysis of the relationship between predictor
counts and accuracy scores for various machine learning
algorithms revealed insightful findings, as shown in Table 3.
For SGD, the results indicate a negligible impact of predictor
count on accuracy, as evidenced by the near-zero coefficient
(-0.002) and high p-value (0.505), suggesting no statistically
significant relationship. This implies that SGD maintains
consistent accuracy regardless of the number of predictors.

TABLE 3. Impact of Predictor Count on Performance.

 B Std. Err. t r2 p

SGD -.002 .003 -0.698 -.06 .505

LR -.003 .002 -1.296 .07 .231

SVM -.007 .002 -4.442 .68 .002

NB -.003 .002 -1.528 .13 .165

CART .012 .002 6.346 .81 .000

 LR, with a slightly negative coefficient (-0.003) and a p-
value (0.231) greater than 0.05, also shows no significant
relationship between predictor count and accuracy. This
indicates that while additional features may have a minor
negative impact, they are not substantial enough to affect LR's
overall performance significantly. Thus, LR can be considered
reliable in situations with varying feature sets, though it does
show some sensitivity to feature richness. In contrast, SVM
reveals a significant negative relationship between the
predictor counts and accuracy, with a coefficient of -0.007 and
a highly significant p-value (0.002). The R-squared value
(0.68) further indicates that the number of predictors explains
a substantial portion of the variance in accuracy. This finding
implies that adding more predictors introduces noise or
complexity that adversely affects SVM's performance,
suggesting a need for careful feature selection when SVM.
 Meanwhile, NB shows a small negative relationship with
a coefficient of -0.003 and a p-value of 0.165, indicating no
statistically significant impact of additional predictors on its
accuracy. While it initially performs well with fewer features,
the slight decline in accuracy as more features are added may
be attributed to overfitting or the introduction of irrelevant
information. Therefore, NB is best suited for scenarios with
limited highly relevant features. Lastly, CART exhibits a
strong positive relationship with the number of predictors, as
shown by the positive coefficient (0.012) and very low p-value
(0.000). The R-squared value (0.81) indicates that a large
proportion of the variance in accuracy is due to the number of
features. This suggests that CART benefits significantly from
an increased number of predictors, leveraging the additional
information to enhance performance.

B. Overall Performance of Algorithms

 Table 4 shows each algorithm's overall averaged
accuracy, precision, and recall in determining students at risk
of failing programming. SGD demonstrates the highest
average accuracy (73.09%) among the algorithms, indicating
its effectiveness in correctly identifying at-risk and not-at-risk
students. Its high precision (78.21%) suggests it can identify
TPs (students at risk) correctly. In comparison, its
exceptionally high recall (89.95%) shows that it rarely misses
students who are at risk. This balance makes it a reliable
choice for this application, ensuring most at-risk students are
detected with few FPs. Such robust performance highlights
the utility of SGD in educational settings, corroborating
findings by Rebala et al. [16] on the importance of algorithm
selection.

TABLE 4. Overall Accuracy, Precision, and Recall

Algorithms Accuracy Precision Recall

SGD 73.09% 78.21% 89.95%

LR 72.08% 74.30% 93.80%

SVM 72.24% 75.50% 90.00%

NB 62.92% 73.56% 74.65%

CART 69.86% 74.28% 88.40%

 NB has a slightly lower average accuracy (72.08%) than
SGD. However, it exhibits the highest recall (93.80%),
indicating that it effectively identifies nearly all at-risk
students. Its precision (74.30%) is also commendable but
slightly lower than SGD's. This suggests that while NB is
excellent at capturing at-risk students, it may also classify
more students as at-risk who are not, leading to a higher
number of FPs. These results align with Rish's study [20] on
NB’s performance in different contexts. On the other hand,
LR performs well with an average accuracy of 72.24%,
precision of 75.50%, and recall of 90.00%. These metrics are
balanced, indicating that this algorithm is a solid choice,
performing well in identifying at-risk students and minimizing
FPs. The effectiveness of LR in educational data mining has
been documented by Hosmer et al. [18], emphasizing its
practical utility. Meanwhile, CART shows the lowest average
accuracy (62.92%) among the algorithms, indicating it is less
reliable in identifying at-risk students than the other models.
Its precision (73.56%) and recall (74.65%) are also lower,
suggesting that CART is less effective in this context. This
result indicates that CART produces more FPs and FNs,
making it less suitable for identifying at-risk students in
programming courses. Breiman et al. [21] also noted similar
limitations of CART. Lastly, SVM has an average accuracy of
69.86%, slightly lower than SGD and LR. Its precision
(74.28%) and recall (88.40%) are also respectable, indicating
that SVM is quite effective in identifying at-risk students,
though not as robust as the top-performing algorithms. This
finding is supported by the work of Cortes and Vapnik [22],
who highlighted the strengths and weaknesses of SVM in
various applications.

C. One-Way ANOVA Results

 Table 5 provides significant insights into the differences
in accuracy scores among the various algorithms used to
identify students at risk of failure in programming courses.
The analysis shows that the variability in accuracy scores
attributable to the differences between the algorithms
(treatment sum of squares) is 0.0664, while the variability due
to random error or other uncontrolled factors (error sum of
squares) is 0.0676. With degrees of freedom of 4 for the
treatment and 80 for the error, the mean square values are
0.0166 and 0.0008, respectively.

TABLE 5. Significant Differences in Accuracy.

Source SS df MS F p

treatment 0.0664 4 0.0166 19.62 .000

error 0.0676 80 0.0008

total 0.1340 84

 The F-statistic is 19.62, which indicates a significant
difference between the means of the different treatment
groups. The associated p-value is less than 0.001, suggesting
that the probability of observing such a large F-statistic under

32 PHILIPPINE JOURNAL OF SCIENCE, ENGINEERING, AND TECHNOLOGY 2024

the null hypothesis (no differences between group means) is
very low. Consequently, the null hypothesis is rejected; hence,
the algorithms have significant differences in accuracy scores.
These results imply that the choice of algorithm substantially
impacts the accuracy of identifying at-risk students. The
significant F-statistic and very low p-value underscore the
importance of selecting the appropriate algorithm for
predictive modeling. This result is supported by [1] and [13],
highlighting the importance of algorithm selection in
educational contexts.
 Table 6 reveals essential insights into the differences in
precision scores among the various algorithms used to identify
at-risk students in programming. The results show that the
variability in precision scores attributable to the differences
between the algorithms (treatment sum of squares) is 0.0075,
while the variability due to random error or other uncontrolled
factors (error sum of squares) is 0.0921. With degrees of
freedom of 4 for the treatment and 80 for the error, the mean
square values are 0.0019 and 0.0012, respectively.

TABLE 6. Significant Differences in Precision.

Source SS df MS F p

treatment 0.0075 4 0.0019 1.63 .174

error 0.0921 80 0.0012

total 0.0996 84

 The F-statistic is 1.63, which is relatively low. This result
suggests no significant differences in precision scores
between the treatment groups. The associated p-value is
0.174, much higher than the significance threshold of 0.05.
This high p-value indicates that the observed differences in
precision scores are likely due to random variation rather than
actual differences between the algorithms. These results imply
that the choice of algorithm does not substantially impact
precision when identifying at-risk students. The non-
significant F-statistic and high p-value suggest that the
precision scores of the various algorithms are not statistically
different. This finding indicates that, in terms of precision, any
of the evaluated algorithms could be used without expecting
significant differences in their performance. Consequently,
other factors, such as accuracy and recall, must be prioritized
when selecting an algorithm for early intervention strategies.
This finding aligns with previous reports by [5] and [10] on
evaluating algorithm performance in educational settings.
 Table 7 reveals significant insights into the differences in
recall scores among the various algorithms used to identify
students at risk of failure in introductory programming
courses. The analysis shows that the variability in recall scores
attributable to the differences between the algorithms
(treatment sum of squares) is 0.2071, while the variability due
to random error or other uncontrolled factors (error sum of
squares) is 0.2808. With degrees of freedom of 4 for the
treatment and 80 for the error, the mean square values are
0.0518 and 0.0035, respectively.

TABLE 7. Significant Differences in Recall

Source SS df MS F p

treatment 0.2071 4 0.0518 14.74 .000

error 0.2808 80 0.0035

total 0.4880 84

 The F-statistic is 14.74, which indicates a significant
difference between the means of the different treatment
groups. The associated p-value suggests that the probability of
observing such a large F-statistic under the null hypothesis (no
differences between group means) is extremely low.
Therefore, the null hypothesis is rejected, and it is concluded
that there are significant differences in recall among the
models. These results imply that the choice of algorithm
substantially impacts recall when identifying at-risk students.
The significant F-statistic and very low p-value underscore the
importance of selecting the appropriate algorithm to maximize
recall. This finding is crucial because high recall is essential
in this context to ensure that most at-risk students are
identified for early intervention. Therefore, educators and
administrators should consider the recall rates as a critical
factor when choosing an algorithm for predictive modeling
and early intervention strategies to support at-risk students
effectively. This conclusion is consistent with literature
highlighting algorithm performance's crucial role in
educational outcomes [4], [12].

5 | CONCLUSION

This study explored the efficacy of five supervised learning
algorithms in predicting computing students at risk of failing
introductory programming courses. By employing LR, SGD,
NB, CART, and SVM, this research aimed to identify the most
effective model for an early warning system.
 In the experiment, SGD emerged as the most reliable
algorithm across several metrics, achieving the highest overall
accuracy (73%) and precision (78%). This suggests its
suitability for contexts where accuracy and precision are
critical. On the other hand, NB excelled in recall, scoring 94%,
making it preferable for scenarios where identifying all
potential at-risk students is paramount.
 Significant predictors such as honors received in high
school, parental status, and whether the admission was a
personal choice played a crucial role in determining student
performance. The study found that while CART's
performance was notably influenced by the number of
predictors, its accuracy and recall scores were statistically
lower than the other algorithms. These findings underscore the
importance of using diverse predictive models to enhance the
identification of at-risk students. By leveraging the strengths
of different algorithms, educators can implement more
tailored interventions, ultimately aiming to reduce failure rates
and improve educational outcomes in programming courses.
Future research should focus on refining these models and
exploring additional predictors to enhance their predictive
power and applications.

REFERENCES

[1] R. Bringula, A. Aviles, M. Batalla, M. Borebor, M. Uy, and B. San
Diego, "Factors Affecting Failing the Programming Skill Examination
of Computer Students," I.J. Modern Education and Computer Science,
vol. 5, pp. 1-8, 2017, doi: 10.5815/ijmecs.2017.05.01.

[2] N.A. Isa and S.R. Derus, "Students Experience in Learning
Fundamental Programming: An analysis by Gender Perception,"
Advanced Journal of Technical and Vocational Education, vol. 1, no.
1, pp. 240-248, 2017.

[3] N. Bubica and I. Boljat, "Predictors of Novices Programmers'
Performance," in 7th International Conference of Education, Research,
and Innovation 2014, Seville, Spain, 2014, pp. 1536-1545.

[4] E. Tabanao, M. Rodrigo, and M. Jadud, "Predicting At-Risk Novice
Java Programmers through the Analysis of Online Protocols," in
International Computing and Engineering Researches '11, Providence,
Rhode Island, USA, 2011.

VOLUME 1, ISSUE 1 33

[5] P. Tan, C. Ting, and S. Ling, "Learning Difficulties in Programming
Courses: Undergraduates' Perspective and Perception," in International
Conference on Computer Technology and Development, Kota
Kinabalu, Malaysia, 2009, pp. 42-46, doi: 10.1109/ICCTD.2009.188.

[6] E. Lahtinen, K. Ala-Mutka, and H. Jarvinen, "A Study of the
Difficulties of Novice Programmers," in 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science
Education, Monte de Caparica, Portugal, 2005, pp. 14-18.

[7] M. Konecki, "Problems in Programming Education and Means of their
Improvement," DAAAM International Scientific Book, pp. 459-470,
2014, doi: 10.2507/daaam.scibook.2014.37.

[8] A.J. Mendes, L. Paquete, A. Cardoso, and A. Gomes, "Increasing
Student Commitment in Introductory Programming Learning," in 42nd
ASEE/IEEE Frontiers in Education Conference, Washington, USA,
2012, pp. 82-87.

[9] P. Kinnunen and B. Simon, "Experiencing Programming Assignments
in CS1: The Emotional Toll," in International Computing Education
Research, Aarhus, Denmark, 2010, pp. 77-85.

[10] K. Kori, M. Pedaste, A. Leijen, and E. Tonisson, "The Role of
Programming Experience in ICT Students' Learning Motivation and
Academic Achievement," International Journal of Information and
Education Technology, vol. 6, no. 5, pp. 331-337, 2016.

[11] J. Bennedsen and M. Caspersen, "Failure Rates in Introductory
Programming - 12 Years Later," 10(2), pp. 30-35, June 2019, doi:
10.1145/3324888.

[12] C. Watson and F. Li, "Failure Rates in Introductory Programming
Revisited," in 19th Annual Conference on Innovation and Technology
in Computer Science Education, New York, NY, 2014, pp. 39-44, doi:
10.1145/2591708.2591749.

[13] R. Asif, A. Merceron, and M. Pathan, "Predicting Student Academic
Performance at Degree Level: A Case Study," I.J. Intelligent Systems
and Applications, vol. 1, pp. 49-61, 2015, doi:
10.5815/ijisa.2015.01.05.

[14] R. R. Kabra and R. S. Bichkar, "Performance Prediction of Engineering
Students using Decision Trees," International Journal of Computer
Applications, vol. 36, no. 11, pp. 8-12, 2011.

[15] P. Dangeti, Statistics for Machine Learning, Birmingham, Mumbai:
Packt Publishing, 2017.

[16] G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine
Learning, Switzerland: Springer Nature, 2019, doi: 10.1007/978-3-
030-15729-6.

[17] A. Burkov, The Hundred-Page Machine Learning Book.-,
Amazon.com, 2019. https://www.amazon.com/Hundred-Page-
Machine-Learning-Book/dp/199957950X

[18] D.W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic
Regression. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. doi:
https://doi.org/10.1002/9781118548387.

[19] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient
Descent,” Proceedings of COMPSTAT’2010, pp. 177–186, 2010, doi:
https://doi.org/10.1007/978-3-7908-2604-3_16.

[20] I. Rish, "An Empirical Study of the Naive Bayes Classifier," in IJCAI
2001 Workshop on Empirical Methods in Artificial Intelligence,
Seattle, WA, USA, 4 August 2001, pp. 41-46.

[21] L. Breiman, J. Friedman, R.A. Olshen, and C.J. Stone, Classification
and Regression Trees (1st ed.). Chapman and Hall/CRC, 1984.
https://doi.org/10.1201/9781315139470.

[22] C. Cortes, and V. Vapnik, Support-vector networks. Mach Learn 20,
273–297, 1995. https://doi.org/10.1007/BF00994018.

[23] M. Mladenovic, M. Rosic, and S. Mladenovic, "Comparing Elementary
Students' Programming Success based on Programming Environment,"
International Journal on Modern Education and Computer Science, vol.
8, pp. 1-10, 2016, doi: 10.5815/ijmecs.2016.08.01.

[24] S. Kannan, D. Sumathi, and T. Prabakaran, "A Study on Challenges
and Opportunities in Teaching Programming Subject to First Year
Computer Science and Engineering Students: In the Perspective of
Faculty and Students," Journal of Engineering Education
Transformations, vol. 31, no. 3, pp. 74-78, 2018.

[25] B. Ozmen and A. Altun, "Undergraduate Students’ Experiences in
Programming: Difficulties and Obstacles," Turkish Online Journal of
Qualitative Inquiry, vol. 5, no. 3, pp. 9-27, 2014.

[26] K. Sarpong, J. Arthur, and P. Owusu, "Causes of Failure of Students in
Computer Programming Courses: The Teacher-Learner Perspective,"

International Journal of Computer Applications, vol. 77, no. 12, pp. 27-
32, 2013.

[27] G. Badr, A. Algobail, H. Almutairi, and M. Almutery, "Predicting
Students’ Performance in University Courses: A Case Study and Tool
in KSU Mathematics Department," Procedia Computer Science, vol.
82, pp. 80-89, 2016. doi: 10.1016/j.procs.2016.04.012.

[28] A.F. ElGamal, "An Educational Data Mining Model for Predicting
Student Performance in Programming Course," International Journal
of Computer Applications, vol. 70, no. 17, pp. 22-28, 2013.

[29] S. Bergin, A. Mooney, J. Ghent, and K. Quille, "Using Machine
Learning Techniques to Predict Introductory Programming
Performance," International Journal of Computer Science and Software
Engineering, vol. 4, no. 12, pp. 323-328, 2015.

[30] S. Bergin and R. Reilly, "Predicting Introductory Programming
Performance: A Multi-Institutional Multivariate Study," Computer
Science Education, vol. 16, no. 4, pp. 303-323, 2006.

[31] M. Berndtsson, J. Hansson, B. Olsson, and B. Lundel, Thesis Projects:
A Guide for Students in Computer Science and Information Systems,
2nd ed. London: Springer-Verlag, 2008.

