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Abstract 

This study compares the performance of five supervised learning algorithms—logistic 

regression (LR), logistic regression optimized using stochastic gradient descent 

(SGD), Naïve Bayes (NB), support vector machine (SVM), and classification and 

regression tree (CART)—in predicting students at risk of failure in introductory 

programming courses. Using a dataset of 68 students from a private higher education 

institution, the algorithms were evaluated through five-fold cross-validation based on 

accuracy, precision, and recall. Results indicated that SGD achieved the highest 

accuracy (73.09%) and precision (78.21%), while NB excelled in recall (93.80%). 

These findings suggest that SGD is preferable for accuracy-focused contexts, while 

NB is suitable for recall-focused scenarios. Moreover, the differences in performance 

among the algorithms in terms of accuracy and recall were statistically significant 

using ANOVA and post-hoc tests. This finding highlights the critical role of algorithm 

selection in predictive modeling for educational interventions, guiding educators to 

make data-driven decisions to support at-risk students better.  
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1   | INTRODUCTION 

omputer programming is considered one of the 

essential skills that every computing student must 

acquire and develop [1]. Unfortunately, many 

college students perceive programming as complicated [2], 

complex [3], and excessively demanding [4]. Several factors 

contribute to this negative perception, including the abstract 

nature of programming [5] and its demand for higher-order 

thinking skills [6]. Unfortunately, this perception often leads 

to significant issues [3], such as negative attitudes toward 

programming courses [7], fear of the subject [8], and notably 

high failure rates [9]. Consequently, there is a critical need for 

effective strategies and interventions to address these 

challenges and improve student outcomes. By fostering a 

more supportive learning environment and utilizing 

innovative teaching methods, educators can help students 

overcome these obstacles and build confidence in their 

programming abilities. 

High failure rates in programming courses are typical in 

higher education institutions worldwide [10]. A 2019 report 

[11] revealed that the global average failure rate in 

programming courses was 28%. While this rate slightly 

improved from the 32% reported in 2014 [12], the failure rate 

remains alarmingly high. This persistent issue highlights the 

ongoing challenges in programming education that underscore 

the need for improved teaching methodologies and support 

systems to equip students to overcome the complexities of 

programming better. 

These high failure rates affect the student's academic 

performance and self-confidence and have broader impacts on 

the IT industry, which relies on a steady influx of skilled 

programmers. Thus, these challenges must be addressed to 

foster a more positive learning environment and ensure the 

development of competent professionals in the field. 

Additionally, we must address the gap in knowledge about the 

factors contributing to these high failure rates and mitigate 

them through tailored solutions.  

C 
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One of the proposed solutions to improve students' 

passing rate in programming is using predictive models to 

identify at-risk students earlier [4] and provide targeted 

interventions [13]. Significant predictors must be identified 

and fed into a machine learning algorithm to discover hidden 

patterns and build an intelligent model to identify students at 

risk of failing introductory programming courses even before 

enrollment. This identification task should provide insights 

into designing tailored solutions, especially for those needing 

them the most [14].  

Despite the recognized importance of early identification 

of at-risk students, more research is needed to compare the 

performance of different supervised learning algorithms in 

this context. Instead, previous studies have primarily focused 

on single algorithms or small-scale comparisons, leaving a 

gap in comprehensive, comparative analyses that can inform 

best practices in predictive modeling for educational 

interventions. Thus, this study aims to fill this gap by 

evaluating and comparing five supervised learning 

algorithms—Logistic Regression (LR), Logistic Regression 

optimized using Stochastic Gradient Descent (SGD), Naïve 

Bayes (NB), Support Vector Machine (SVM), and 

Classification and Regression Tree (CART)—in predicting 

at-risk students in introductory programming courses. 

Specifically, this study has three main objectives: (1) to 

determine the overall accuracy, precision, and recall scores of 

the different supervised machine learning algorithms in 

predicting students at risk of failing in programming courses; 

(2) to identify the most significant predictors of at-risk 

students based on pre-admission data; and (3) to recommend 

the most suitable algorithm for early intervention based on 

comparative performance. 

 

2   |  RELATED STUDIES 
A. Supervised Machine Learning Algorithms 

Supervised machine learning algorithms are widely used 
to build models that determine the relationship between a set 
of predictors and a target feature [15]. These algorithms 
identify vital characteristics within the predictors associated 
with the target feature during the model-building process [16]. 
Once trained, the model can predict the target feature for new 
observations based on the discovered key characteristics [17]. 

Several supervised machine learning algorithms are 
popular in the industry due to their effectiveness in handling 
various predictive tasks. This study, however, selected only 
five supervised learning algorithms: LR, SGD, NB, CART, 
and SVM. LR, a widely used algorithm for binary 
classification problems, is known for its simplicity and 
effectiveness [18]. SGD is an enhanced version of LR with 
higher efficiency and faster convergence speed [19]. NB, a 
probabilistic classifier based on Bayes' theorem, is particularly 
effective for high-dimensional data [20]. CART is a non-
parametric method that creates decision trees based on the 
features and their values [21]. Finally, SVM is a robust 
classification algorithm that finds the optimal hyperplane to 
separate different classes [22]. 

B. Complexity of Computer Programming 

Computer programming is an essential component of the 

education process for computing students [7]. Consequently, 

most computer and information science curricula introduce 

programming courses as early as the first year. As a result, 

programming is often perceived as mentally demanding, 

especially by first-year students and aspirants who need prior 

programming experience [23]. This negative perception is 

attributed to the higher-order thinking skills requirement [5] 

and the abstract nature of programming [6], which most new 

programmers need to be more accustomed to handling [7].  

Researchers have identified various factors contributing to 

the perceived difficulty of programming [24], [25], [26]. For 

instance, research [3] found that mathematical knowledge, 

prior programming experience, and student interest 

significantly impact the complexity of learning computer 

programming. Additionally, time insufficiency, self-

inefficacy, and mismatched question-time allotment are 

among the top reasons students fail programming [1]. Thus, a 

multifaceted approach is needed to address the negative 

perception of programming. In addition, educators need to 

consider students' diverse backgrounds and experiences, such 

as their mathematical proficiency and prior exposure to 

programming. Interventions should focus on improving time 

management skills, boosting students' confidence, and 

ensuring that assessments are appropriately timed and aligned 

with the student's learning pace. Moreover, incorporating 

adaptive learning technologies and personalized support can 

further help tailor the educational experience to individual 

student needs. By tackling these issues, educators can create a 

more supportive learning environment, potentially enhancing 

overall student success in programming courses.  

C. Predicting Student's Performance in Programming 

Predicting student performance in programming courses is 

a prominent theme in computer science education research 

[3]. For this purpose, scholars have used various data mining 

and machine learning techniques to predict students’ 

programming performance before enrolling in relevant 

courses. For instance, Badr et al. [27] presented a data mining 

model that predicts student performance in programming 

courses based on their grades in introductory education 

courses, including English and mathematics. Meanwhile, 

ElGamal [28] used a data mining model to predict student 

performance in programming using factors such as 

mathematical background and aptitude. On the other hand, 

Bergin et al. [29] employed various machine-learning 

algorithms to predict student performance in programming 

courses. Their earlier study [30] used a logistic regression 

model to predict student success in programming. These 

studies are evidence that, by leveraging predictive models, 

educators can proactively identify at-risk students of either 

failing or underperforming in programming.   

3   | METHODOLOGY 
A. Research Design 

 This study employed a comparative research design to 
evaluate the effectiveness of five supervised learning 
algorithms—LR, SGD, NB, SVM, and CART—to predict 
students at risk of failing introductory programming courses. 
The rationale for selecting these algorithms is based on their 
widespread use in educational data mining and their varying 
strengths in handling different types of data and prediction 
tasks [31]. The comparative approach allows for a robust 
evaluation of each algorithm's performance across multiple 
metrics. Figure 1 shows the train-test process, including 
feature engineering, adopted in this study.  
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Figure 1. Train-Test Schematic Diagram.  
 

B. Dataset and  Sample Size 

  The data used in this study was collected from a private 
higher education institution and included records of 68 
students enrolled in introductory programming courses. The 
sample size, though relatively small, is representative of the 
student population in the institution's programming courses. 
Data collection involved extracting pre-admission records and 
academic performance data from the institution's database. 
The collected data included various demographic and 
educational variables, such as honors received in high school, 
parental status, and personal choice of admission. Several 
preprocessing steps were performed to ensure the data's 
quality and relevance. Missing values were handled using 
mean imputation for numerical variables and mode imputation 
for categorical variables. Outliers were identified and 
removed based on standard deviation criteria. Feature 
selection was guided by a literature review and expert 
consultation, identifying key demographic and academic 
variables relevant to predicting student performance. 

C. Ethical Considerations 

  Ethical considerations were paramount in this study. Data 
anonymization was rigorously applied to remove personally 
identifiable information, ensuring student privacy and 
confidentiality. Informed consent was obtained from all 
participants through a detailed consent form, which 
communicated the study's purpose, methods, and potential 
implications. Participants were assured of their right to 
withdraw from the study at any time without any 
consequences. The research adhered to the ethical guidelines 
set by the institution's review board, ensuring that the survey 
was conducted responsibly and ethically. Additionally, the 
study was approved by the institution's ethics committee, 
which reviewed the consent process and data handling 
procedures to ensure compliance with ethical standards. 

D. Feature Selection and Engineering 

  The feature selection and engineering process was carried 
out meticulously to enhance the predictive power of the 
models. The initial feature selection was based on a thorough 
literature review and expert consultation, which identified 
critical demographic and academic variables relevant to 
predicting student performance. Additionally, the data 
underwent preprocessing steps, including normalization and 
handling of missing values, to ensure the integrity and 
consistency of the predictors. This careful approach not only 
strengthened the model's accuracy but also ensured that the 
selected features were robust and relevant to the study's 
objectives. Table 1 shows the list of predictors used in this 
study, including the code, data type, and description.  

TABLE 1. List of Predictors.  

CODE TYPE DESCRIPTION DOMAIN 

SEX Bin Student’s sex Male, Female 

LAREA Bin Student’s Living area Rural, Urban 

ARTS Num Abstract Reasoning Test  0 – 25 

DTS Num Diagrammatic Test 0 – 20 

CTS Num Computing Test 0 – 25 

VTS Num Visualization Test 0 – 30 

ETS Num Essay Test 0 – 20 

PFC Nom Program of 1st Choice CS, EMC, IS, IT 

PSC Bin Program of 2nd Choice ITE, non ITE 

APC Bin Admission is a Choice Yes, No 

SS Bin The student is a Scholar Yes, No 

PST Nom Parent’s Status BA, FO, MO, NA 

FED Ord Father Highest education N, E, H, C, G 

FCG Bin Father is a Graduate Yes, No 

MED Ord Mother Highest education N, E, H, C, G 

MCG Bin Mother is a Graduate Yes, No 

THS Bin Type of High School Public, Private 

LHS Bin Location of High School Rural, Urban 

STEM Bin Student is STEM Yes, No 

HON Bin Student has Honor Yes, No 

   
The predictors included five numeric variables (scores 

from abstract reasoning, diagrammatic, computing, 
visualization, and essay tests), eleven binary variables (e.g., 
gender, living area, type of high school), two nominal 
variables (program of first choice, parents' status), and two 
ordinal variables (parents' highest education levels). These 
predictors were ranked according to their importance, as 
shown in Table 2, using a Python built-in library. A stepwise 
approach was used to add features incrementally, evaluating 
their impact on model performance at each step. This 
approach ensures that the most relevant features are included 
while avoiding overfitting and noise.  

 

TABLE 2. Top 10 Predictive Features per Algorithm.  

Rank LR SDG NB SVM CART 

1 HON HON PST APC CTS 

2 APC APC SS HON VTS 

3 PST PST STEM PST DTS 

4 SS SS PFC SS ETS 

5 SEX SEX HON SEX HON 

6 STEM PSC THS PSC FED 

7 PSC LHS PSC FED ARTS 

8 FED THS SEX MED MED 

9 THS FED LAREA CTS APC 

10 LAREA CTS APC PFC STEM 

 

E. Model Building and Testing 

  The dataset was split into five subsets during model 
building for five-fold cross-validation. In each iteration, four 
subsets were used for training, and one subset was used for 
testing. This process was repeated five times, ensuring each 
subset was used once as the test set. Five-fold cross-validation 
helps in reducing the variability in model performance due to 
the specific training-test split and provides a more reliable 
evaluation of the models. 

 The performance of the models was evaluated using three 
key metrics: accuracy, precision, and recall. These metrics, 
derived from the confusion matrix shown in Figure 2, provide 
a comprehensive assessment of the model's classification 
capabilities. The confusion matrix offers a detailed breakdown 
of the classification results by displaying the number of true 
positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) predictions.  
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    Figure 2. Confusion Matrix. 

 
Accuracy is the proportion of correct predictions out of 

the total number of predictions made. This metric provides a 

general sense of the model's effectiveness across all classes. 

The formula used to compute accuracy is shown in Equation 

1, which sums the TPs and TNs and divides this sum by the 

total number of predictions [29].  

 

Accuracy =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 
On the other hand, precision is the number of TP 

predictions divided by the total number of positive 

predictions, including both TPs and Ps. This measure 

indicates the accuracy of the positive predictions made by the 

model, reflecting how many of the predicted positive 

outcomes were correct. A high precision value means the 

model has a low rate of FPs, which is crucial in applications 

where the cost of FP is high. The formula used to compute 

precision is presented in Equation 2 [29].  

 

Precision =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 
Recall, also known as sensitivity, measures the model's 

ability to identify all positive instances in the dataset 

correctly. It is calculated by dividing the number of TP 

predictions by the total number of actual positive instances, 

including both true and false negatives. A low recall indicates 

that the model fails to identify many positive instances, 

resulting in many false negatives. The formula used to 

compute recall is shown in Equation 3 [29].  

 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

4   | RESULTS AND DISCUSSION 

A. Number of Predictors and Accuracy of Algorithms 

  The researchers assessed the accuracy trend for each 
algorithm as the number of predictive features increased. A 
predictive feature was added for each iteration according to 
their ranking, as shown in Table 2, followed by model 
building and performance assessment. Figure 3 visualizes the 
summary results of this experiment.  

 
Figure 3. Experiment Results Visualization. 
 
  The accuracy of LR starts low but increases significantly 
with the addition of more features, peaking at around five 
features before experiencing fluctuations. Initially, the 
performance is relatively poor with fewer features, but it 
stabilizes and improves as more relevant features are included, 
indicating the importance of feature richness for this algorithm 
[16]. SGD, on the other hand, exhibits a high initial accuracy, 
which peaks early but then shows a slight decline and 
stabilizes with more features. This algorithm performs 
consistently well, maintaining one of the highest accuracy 
rates across different numbers of features, demonstrating its 
robustness and efficiency in handling high-dimensional data 
[19]. 
  NB starts high but gradually declines as more features are 
added, with some fluctuations. It performs well initially with 
fewer features but tends to degrade as additional features are 
included, possibly due to the increased noise or complexity 
introduced by the extra features [20]. Conversely, SVM shows 
a relatively stable accuracy rate, with minor fluctuations as the 
number of features increases. It maintains a steady 
performance across different numbers of features, indicating 
its ability to handle varying feature sets effectively [22]. SVM 
starts strong and continues to perform well throughout. 
Meanwhile, CART shows a unique upward trend as more 
features are added, starting from a moderate level and 
improving significantly, peaking around 6-7 features before 
stabilizing. CART initially performs moderately but benefits 
greatly from additional features [21]. 
  SGD and SVM generally maintain the highest accuracy 
rates across different numbers of features. SGD, in particular, 
peaks early and sustains high performance. LR shows a 
significant improvement with an increasing number of 
features. In contrast, NB suffers from overfitting as more 
features are added. SVM and CART exhibit stable and 
improving trends, respectively, indicating their robustness 
regarding predictor count and ability to leverage additional 
information effectively. While LR and NB fluctuate more 
significantly, SGD, SVM, and CART demonstrate more 
stable and consistent performance, making them more reliable 
for scenarios with varying feature sets. 
  These results underscore the importance of selecting a 
suitable algorithm based on the available predictors. 
Algorithms like SGD and SVM, which show robust 
performance across different feature sets, may be preferred for 
their consistency and reliability [19], [22]. Conversely, while 
NB can perform well with limited features, it may not scale as 
effectively with added complexity [20]. On the other hand, LR 
can significantly benefit from a richer feature set, making it 
suitable for applications where comprehensive data is 
available [16]. Finally, CART's performance improvement 
with more features highlights its strength in scenarios where 
feature richness can be fully exploited [21]. 
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  Further analysis of the relationship between predictor 
counts and accuracy scores for various machine learning 
algorithms revealed insightful findings, as shown in Table 3. 
For SGD, the results indicate a negligible impact of predictor 
count on accuracy, as evidenced by the near-zero coefficient 
(-0.002) and high p-value (0.505), suggesting no statistically 
significant relationship. This implies that SGD maintains 
consistent accuracy regardless of the number of predictors. 
 

TABLE 3. Impact of Predictor Count on Performance.  

 B Std. Err. t r2 p 

SGD -.002 .003 -0.698 -.06 .505 

LR -.003 .002 -1.296 .07 .231 

SVM -.007 .002 -4.442 .68 .002 

NB -.003 .002 -1.528 .13 .165 

CART .012 .002 6.346 .81 .000 

 
  LR, with a slightly negative coefficient (-0.003) and a p-
value (0.231) greater than 0.05, also shows no significant 
relationship between predictor count and accuracy. This 
indicates that while additional features may have a minor 
negative impact, they are not substantial enough to affect LR's 
overall performance significantly. Thus, LR can be considered 
reliable in situations with varying feature sets, though it does 
show some sensitivity to feature richness. In contrast, SVM 
reveals a significant negative relationship between the 
predictor counts and accuracy, with a coefficient of -0.007 and 
a highly significant p-value (0.002). The R-squared value 
(0.68) further indicates that the number of predictors explains 
a substantial portion of the variance in accuracy. This finding 
implies that adding more predictors introduces noise or 
complexity that adversely affects SVM's performance, 
suggesting a need for careful feature selection when SVM. 
  Meanwhile, NB shows a small negative relationship with 
a coefficient of -0.003 and a p-value of 0.165, indicating no 
statistically significant impact of additional predictors on its 
accuracy. While it initially performs well with fewer features, 
the slight decline in accuracy as more features are added may 
be attributed to overfitting or the introduction of irrelevant 
information. Therefore, NB is best suited for scenarios with 
limited highly relevant features. Lastly, CART exhibits a 
strong positive relationship with the number of predictors, as 
shown by the positive coefficient (0.012) and very low p-value 
(0.000). The R-squared value (0.81) indicates that a large 
proportion of the variance in accuracy is due to the number of 
features. This suggests that CART benefits significantly from 
an increased number of predictors, leveraging the additional 
information to enhance performance. 

B. Overall Performance of Algorithms 

  Table 4 shows each algorithm's overall averaged 
accuracy, precision, and recall in determining students at risk 
of failing programming. SGD demonstrates the highest 
average accuracy (73.09%) among the algorithms, indicating 
its effectiveness in correctly identifying at-risk and not-at-risk 
students. Its high precision (78.21%) suggests it can identify 
TPs (students at risk) correctly. In comparison, its 
exceptionally high recall (89.95%) shows that it rarely misses 
students who are at risk. This balance makes it a reliable 
choice for this application, ensuring most at-risk students are 
detected with few FPs. Such robust performance highlights 
the utility of SGD in educational settings, corroborating 
findings by Rebala et al. [16] on the importance of algorithm 
selection. 

TABLE 4. Overall Accuracy, Precision, and Recall  

Algorithms Accuracy Precision Recall 

SGD 73.09% 78.21% 89.95% 

LR 72.08% 74.30% 93.80% 

SVM 72.24% 75.50% 90.00% 

NB 62.92% 73.56% 74.65% 

CART 69.86% 74.28% 88.40% 

 
 NB has a slightly lower average accuracy (72.08%) than 
SGD. However, it exhibits the highest recall (93.80%), 
indicating that it effectively identifies nearly all at-risk 
students. Its precision (74.30%) is also commendable but 
slightly lower than SGD's. This suggests that while NB is 
excellent at capturing at-risk students, it may also classify 
more students as at-risk who are not, leading to a higher 
number of FPs. These results align with Rish's study [20] on 
NB’s performance in different contexts. On the other hand, 
LR performs well with an average accuracy of 72.24%, 
precision of 75.50%, and recall of 90.00%. These metrics are 
balanced, indicating that this algorithm is a solid choice, 
performing well in identifying at-risk students and minimizing 
FPs. The effectiveness of LR in educational data mining has 
been documented by Hosmer et al. [18], emphasizing its 
practical utility. Meanwhile, CART shows the lowest average 
accuracy (62.92%) among the algorithms, indicating it is less 
reliable in identifying at-risk students than the other models. 
Its precision (73.56%) and recall (74.65%) are also lower, 
suggesting that CART is less effective in this context. This 
result indicates that CART produces more FPs and FNs, 
making it less suitable for identifying at-risk students in 
programming courses. Breiman et al. [21] also noted similar 
limitations of CART. Lastly, SVM has an average accuracy of 
69.86%, slightly lower than SGD and LR. Its precision 
(74.28%) and recall (88.40%) are also respectable, indicating 
that SVM is quite effective in identifying at-risk students, 
though not as robust as the top-performing algorithms. This 
finding is supported by the work of Cortes and Vapnik [22], 
who highlighted the strengths and weaknesses of SVM in 
various applications. 

C. One-Way ANOVA Results 

  Table 5 provides significant insights into the differences 
in accuracy scores among the various algorithms used to 
identify students at risk of failure in programming courses. 
The analysis shows that the variability in accuracy scores 
attributable to the differences between the algorithms 
(treatment sum of squares) is 0.0664, while the variability due 
to random error or other uncontrolled factors (error sum of 
squares) is 0.0676. With degrees of freedom of 4 for the 
treatment and 80 for the error, the mean square values are 
0.0166 and 0.0008, respectively. 

 

TABLE 5. Significant Differences in Accuracy.  

Source SS df MS F p 

treatment 0.0664 4 0.0166 19.62 .000 

error 0.0676 80 0.0008   

total 0.1340 84    

 
  The F-statistic is 19.62, which indicates a significant 
difference between the means of the different treatment 
groups. The associated p-value is less than 0.001, suggesting 
that the probability of observing such a large F-statistic under 
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the null hypothesis (no differences between group means) is 
very low. Consequently, the null hypothesis is rejected; hence, 
the algorithms have significant differences in accuracy scores. 
These results imply that the choice of algorithm substantially 
impacts the accuracy of identifying at-risk students. The 
significant F-statistic and very low p-value underscore the 
importance of selecting the appropriate algorithm for 
predictive modeling. This result is supported by [1] and [13], 
highlighting the importance of algorithm selection in 
educational contexts. 
  Table 6 reveals essential insights into the differences in 
precision scores among the various algorithms used to identify 
at-risk students in programming. The results show that the 
variability in precision scores attributable to the differences 
between the algorithms (treatment sum of squares) is 0.0075, 
while the variability due to random error or other uncontrolled 
factors (error sum of squares) is 0.0921. With degrees of 
freedom of 4 for the treatment and 80 for the error, the mean 
square values are 0.0019 and 0.0012, respectively. 

 

TABLE 6. Significant Differences in Precision.  

Source SS df MS F p 

treatment 0.0075 4 0.0019 1.63 .174 

error 0.0921 80 0.0012   

total 0.0996 84    

 
  The F-statistic is 1.63, which is relatively low. This result 
suggests no significant differences in precision scores 
between the treatment groups. The associated p-value is 
0.174, much higher than the significance threshold of 0.05. 
This high p-value indicates that the observed differences in 
precision scores are likely due to random variation rather than 
actual differences between the algorithms. These results imply 
that the choice of algorithm does not substantially impact 
precision when identifying at-risk students. The non-
significant F-statistic and high p-value suggest that the 
precision scores of the various algorithms are not statistically 
different. This finding indicates that, in terms of precision, any 
of the evaluated algorithms could be used without expecting 
significant differences in their performance. Consequently, 
other factors, such as accuracy and recall, must be prioritized 
when selecting an algorithm for early intervention strategies. 
This finding aligns with previous reports by [5] and [10] on 
evaluating algorithm performance in educational settings. 
  Table 7 reveals significant insights into the differences in 
recall scores among the various algorithms used to identify 
students at risk of failure in introductory programming 
courses. The analysis shows that the variability in recall scores 
attributable to the differences between the algorithms 
(treatment sum of squares) is 0.2071, while the variability due 
to random error or other uncontrolled factors (error sum of 
squares) is 0.2808. With degrees of freedom of 4 for the 
treatment and 80 for the error, the mean square values are 
0.0518 and 0.0035, respectively. 
 

TABLE 7. Significant Differences in Recall 

Source SS df MS F p 

treatment 0.2071 4 0.0518 14.74 .000 

error 0.2808 80 0.0035   

total 0.4880 84    

 

  The F-statistic is 14.74, which indicates a significant 
difference between the means of the different treatment 
groups. The associated p-value suggests that the probability of 
observing such a large F-statistic under the null hypothesis (no 
differences between group means) is extremely low. 
Therefore, the null hypothesis is rejected, and it is concluded 
that there are significant differences in recall among the 
models. These results imply that the choice of algorithm 
substantially impacts recall when identifying at-risk students. 
The significant F-statistic and very low p-value underscore the 
importance of selecting the appropriate algorithm to maximize 
recall. This finding is crucial because high recall is essential 
in this context to ensure that most at-risk students are 
identified for early intervention. Therefore, educators and 
administrators should consider the recall rates as a critical 
factor when choosing an algorithm for predictive modeling 
and early intervention strategies to support at-risk students 
effectively. This conclusion is consistent with literature 
highlighting algorithm performance's crucial role in 
educational outcomes [4], [12]. 
 

5   | CONCLUSION 

This study explored the efficacy of five supervised learning 
algorithms in predicting computing students at risk of failing 
introductory programming courses. By employing LR, SGD, 
NB, CART, and SVM, this research aimed to identify the most 
effective model for an early warning system. 
  In the experiment, SGD emerged as the most reliable 
algorithm across several metrics, achieving the highest overall 
accuracy (73%) and precision (78%). This suggests its 
suitability for contexts where accuracy and precision are 
critical. On the other hand, NB excelled in recall, scoring 94%, 
making it preferable for scenarios where identifying all 
potential at-risk students is paramount. 
  Significant predictors such as honors received in high 
school, parental status, and whether the admission was a 
personal choice played a crucial role in determining student 
performance. The study found that while CART's 
performance was notably influenced by the number of 
predictors, its accuracy and recall scores were statistically 
lower than the other algorithms. These findings underscore the 
importance of using diverse predictive models to enhance the 
identification of at-risk students. By leveraging the strengths 
of different algorithms, educators can implement more 
tailored interventions, ultimately aiming to reduce failure rates 
and improve educational outcomes in programming courses. 
Future research should focus on refining these models and 
exploring additional predictors to enhance their predictive 
power and applications. 
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